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Abstract Based on Bernoulli statistics of bubble dynamics, a model of void fraction fluctuations in 
two-phase flows is introduced. The model is used to characterize changes of the inlensity of void fi'acfion 
fluctuations at various two-phase flow regimes, i.e. bubbly, slug and annular flows. Depending on the 
applied frequency band, the behavior of the band-passed variance of void fraction fluctuations changes 
significantly. At high frequencies, the band-passed variance increases monotonously with increasing void 
fractions, while the variance over the whole frequency range has a prominent maximum. By performing 
model calculations, the relationship between microscopic two-phase flow parameters and macroscopic 
flow quantities has been analyzed. 

Key Words: void fraction fluctuations, Poisson variable. Bernoulli process, variance of void fraction 

1. I N T R O D U C T I O N  

During the past two decades, significant progress has been made in the identification of two-phase 
flow patterns by analyzing statistical properties of various measurement signals. The applied 
methods involve gamma- or X-ray transmission techniques, light-beam attenuation, pressure 
measurements, as well as experiments with local conductance probes. A detailed overview of these 
methods is given by Dukler & Taitel (1986). Air water two-phase flow experiments by Jones & 
Zuber (1975), Lahey et  al. (1978) and Vince & Lahey (1982) showed that the analysis of moments 
of  the probability density function (pdf) of X-ray void-meter signals gives an insight into the 
structure of two-phase flows. Ohlmer et  al. (1983) combined various measurement techniques l\~r 
two-phase flow identification, using local conductance probes, pressure sensors and X-ray devices. 
Light-beam cross-correlation techniques have been applied by Lubbesmeyer & Leoni (I 983). Power 
spectral density (PSD) and pdf of  pressure signals have been used, e.g. by Jain & Roy (Ic)83), Tutu 
(1984), Matsui (1986), Lin & Hanratty (1987) and Franca et  al. (1991), to infer information about 
two-phase flow regimes. 

In vertical two-phase flows, the following basic flow regimes can be defined: bubbly, slug, churn 
and annular. Bubbly and annular flows have unimodal character, i.e. their pdf is single-peaked. 
Slug flows are classified as bimodal and they have pdf with two peaks. The modality ot" the llow 
is related to the moments of the pdf. This relation has been investigated by Vince & Lahey (1982) 
in order to develop an objective flow regime indicator. They recommend the variance (2nd moment) 
of  the pdf for flow regime identification. A relatively small variance wtlue is the property of bubbly 
and annular flows, while slug flows have large variance. Bubbly-to-slug and slug-to-annular flow 
regime transitions manifest themselves through a sudden increase or decrease in the variance, 
respectively. 

The present paper focuses on the relationship between the void fraction and the statistics of 
two-phase flows. According to Gaertner (1968) and Sultan & Judd (1978), the spatial distribution 
of  bubble generation follows a Poisson law. By assuming that bubbles are produced as a Poisson 
process and they neither collapse nor coalesce while they pass through the channel with a constant 

fPart of this work was carried out when the author was with the Delft Universit~ of Technology. IRI. Delft, 
The Netherlands. 
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velocity, a Poisson bubble statistics can be established. The Poisson statistics implies that distinct 
bubbles are uncorrelated (both in space and in time) and that the occurrence of bubbles is a rare 
event. The variance of the Poisson process is proportional to the probability of an event, i.e. bubble 
presence, in the control volume; see Jenkins & Watts (1968). Therefore, the variance of void fraction 
fluctuations is proportional to the actual void fraction in the case of Poisson model of void fraction 
fluctuations. Indeed, at low void fraction values, a linear relationship has been observed between 
the void fraction and the variance of void fraction fluctuations; see Vince & Lahey (1982). 

The validity of the Poisson model breaks down at higher void fractions due to the following 
reasons. On the one hand, the occurrence of bubbles is not a rare event in bubbly flows with larger 
void fractions, when a lot of bubbles are found in the system and influence the detector signal 
simultaneously. On the other hand, the assumption of the Poisson model regarding the absence 
of temporal and spatial correlation between the bubbles is not valid in slug flows. Therefore, 
bubbles quickly forget the statistics of their birth and the bubble populations in the two-phase flow 
have clear non-Poissonian behavior. Consequently, there is a non-linear relationship between the 
void fraction and the variance of void fraction fluctuations. 

Experimental evidence supports the conclusion that the Poisson bubble statistics are valid only 
at small void fraction values. According to Vince & Lahey (1982) and Matuszkiewicz et al. (1987), 
the variance of void fraction fluctuations has a maximum at a certain void fraction. Jain & Roy 
(1983) showed that the fraction of the high-frequency component of void fraction fluctuations 
increases monotonously with increasing void fractions, These effects can be explained by taking 
into account the presence of spatial and temporal correlations between bubbles in two-phase flows. 
In the interpretation, the following assumptions are used: (1) the two-phase flow is either unimodal 
or bimodal; (2) each mode has a unimodal pdf; (3) the pdf of the bimodal flow is the weighted 
sum of the pdfs of each mode, where the weights are the relative existence times of the modes; (4) 
the time-behavior of each mode has an oscillating character, i.e. the modes follow each other 
periodically. The quantitative characterization of the observed effects can be accomplished by 
means of a set of suitably chosen parameters. A successful characterization of two-phase flows is 
reported by Albrecht et al. (1984) by making use of five parameters (bubble velocity, void fraction 
of both modes, relative existence time of the modes and oscillation frequency). 

In the present paper, the physical meaning of the parameters of non-Poissonian, bimodal 
two-phase flow models is investigated. It will be shown that the actual value of the variance of void 
fraction fluctuations is directly related to the size and distribution of bubbles in two-phase flows. 
Based on Bernoulli statistics of bubbles, the relationship between microscopic two-phase flow 
parameters and macroscopic statistical properties of void fraction fluctuations will be identified and 
analyzed. 

2. B INOMIAL MODEL OF VOID F R A C T I O N  F L U C T U A T I O N S  

2. I. General considerations 

In this chapter, a model of void fraction fluctuations is introduced. We divide the void fraction 
signal into two components: 

~(r, t) = g(r) + &(r ,  t). [1] 

Here, ~(r, t) is the actual value of the void fraction at position r and time t, ((r) is the average void 
fraction at r. & (r, t) is the time-dependent fluctuating component of the void fraction; the average 
value of &(r,  t) is zero. Let us Fourier-transform the fluctuating part of the void fraction: 

&(r, 09) = ~ { & ( r ,  t)}. [2] 

The auto power spectral density (APSD) of void fraction fluctuations will be calculated as follows: 

APSD, , (r ,  09) = &(r, 09) x &*(r,  09) [3] 

where * denotes the operation of complex conjugation. Depending on the actual void fraction 
model, different expressions of APSD,,(r, 09) can be obtained. 
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A quantitative characterization of the noise intensity at a given frequency range is given by the 
normalized root-mean-square (NRMS) noise. The N R M S  noise over frequenciesfl to.~ is defined 
as follows: 

1 
V/f/~ APSD.  (rl , f )  d f  [4] N R M S ,  (r I ,fl ,f2) = ~ _ , 

Here I is the direct current (dc) component  of  the detector signal and f denotes frequency. In the 
case o f f ,  = 0 and ~ - - . f  . . . .  the N R M S  is equal to the normalized standard deviation of  the pdf. 

2.2. Bernoulli statistics of boiling noise 

Let us consider a Bernoulli variable which takes values a and 0 with probabilities P(a) = p and 
P(0) = q = 1 - p .  By considering N independent Bernoulli variables, the possible sums of their 
outcomes are 0, a, 2a . . . . .  Na. The probability distribution is binomial in the case of N events; 
see Jenkins & Watts (1968): 

P ( k a ) = ( k ) p k q N - k ;  k = 1 , 2  . . . . .  N. [5] 

The mean fib and standard deviation aB of the binomial distribution are given by 

PB = Nap, [6] 

aa = ~ [7] 

Assume that the bubbles in a unit volume around spatial position r appear according to Bernoulli's 
law, with possible outcomes a (bubble is present) and 0 (absence of bubble). This means that 
bubbles appear  independently in different space-time points. Here a denotes the unit change in 
the detector signal induced by a single bubble. Consider an observation volume which can 
accommodate  maximum N bubbles (identical bubbles are considered). In the case of  boiling 
monitoring by X-ray detectors, for example, this volume will be that part  of  the coolant channel 
which is illuminated by the X-ray beam. The probability of  bubble appearance at a certain 
observation point r is the average local void fraction E(r) which, in turn, can be identified as the 
parameter  p of  the Bernoulli process: p = c(r). 

According to our assumption about the absence of temporal-correlation between bubbles, the 
autospectrum of void fraction fluctuations in the unit observation volume does not depend on 
frequency. Its variance, a~(r), is obtained from [7]: 

a~(r) = b~c(r)(1 - E(r)) [8] 

where b0 = Na 2 does not depend on the void fraction. Similarly, the mean value of the void fraction 
fluctuations/~B writes: 

/~B = b, E (r)  [9] 

where b, = Na. [8] indicates a parabolic relationship between the variance and c instead of the linear 
dependence in the case of  Poisson model. The physical meaning of coefficients b0 and b, is given 
in the following discussions. 

2.3. Bimodal void fraction fluctuation model 

The assumption concerning spatial and temporal independence of bubbles is definitely not valid 
in slug flows, due to the presence of a well-defined spatial and temporal correlation in the void 
fraction fluctuation signal. Bubbly-to-slug flow regime transition takes place when the void fraction 
exceeds a threshold value. The value of the threshold can be estimated for known liquid and vapor 
volumetric fluxes. Part of  the difficulties can be solved by introducing a modified binomial model, 
in which certain time-correlations are incorporated. 

The modified model is based on the bimodal approximation of void fraction fluctuations in 
two-phase flows. The bimodal model is determined by the following set of  parameters:/z~ and P2, 
cr~ and cry, which are the expected values and variances of  the first and second mode, respectively. 
An additional parameter  is the relative occurrence of mode 1, ce, where 0 -%< c ~< 1. By making use 
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of  the above parameters,  the following expressions can be obtained for the expected value /,rUM and 
variance O-~M of  the bimodal noise 

/fl~v (L Ib  + (1 --  "~L)I~: [10] 

The variance of  the bimodal mixture is the sum of  weighed variances of  the separate modes and 
an additional term. which depends on the difference between the expected values of  the two modes 
and oll their relativc frequency of  occurrence (~L)- For  fixed #, and a~ values, i = I, 2, O-BM is a 
quadratic function o f ~  with u maximum at position: 

(, ,  - , 2 )  e + ~ - o-~ 

{t ....... = 2(/ ' l /  t / 2 )  2 [12] 

If thc parameters of  the two modes are known a priori, the variance of  the bimodal flow can be 
calculated from [i 1]. 

2.4. Re/ationshil~ between microscopic two-phase f low parameters and measured void ./}'action 
characteristic 

Let c; i and c;~ be the variances of  the two raodes, both containing a background component  (rr~) 
and a part induced bv boiling (~7~.,~,): 

~ ; i - ~ ,  + ~L,,: , =  1,2. [13] 

Assume that the mean values and the variances o f  both modes satisfy [8] and [9], respectively. Then 
we obtain: 

lq - ~ l ,  = b ,  ( ( 1  - ~2) [14] 

<r~,,l=hiq(1 q), i = 1 , 2  [15] 

Let us consider the physical meaning of  h, and h,. 

• h is equal to the ratio of  the average value of  the detector signal with full voidage in the 
observation volume and thc xalue o f  the signal with zero void fraction, b, can be written in 
the l>rm: h, = I(~ - 0 % )  -1({  = 100%), where I(~) denotes the value of  the detector signal 
in case o!" void fi-action ~, The value of  h, can be determined by calculations and/or  by 
n ] c a s t l l e l l - l o l l t s .  

• h~ is the xoid coefficient of  the variance o f  void fraction fluctuations at { = 0, b0 = ~a~/& I, =0. 
h. can be either calculated on the basis of  Poisson theory or it can be determined from 
measurements with low void fractions. 

By taking into account  [6] and[7], the following expressions are obtained for coefficients b, and b0: 

h, = Na = 1(~ = 0%) - I(~ = 100%) [16] 

h~, = Na'- = ~c;{/& l, o [17] 

Here N is the maximum possible number  of  bubbles in the sensitivity volume of  the detector; a 
is the absolute variation of  the detector signal caused by a single bubble. For  a known value o f  
the maximum number  and average size of  bubbles, the extension of  the sensitivity volume of  the 
detector can be estimated and vice versa: a typical bubble size can be estimated for a given 
sensitivity volume. Based on [16] and [17], the maximum number  o f  bubbles within the sensitivity 
volume of  the detector writcs: 

~V = t,~/t,~, [181 

The above equation defines a relationship between the parameter  N and measurable quantities b~ 
and h~. In the for thcoming discussions, this relationship will be used to obtain information about  
the structure of  two-phase flow. 
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2.5. Mode l ing  r7 -~ at different f l o w  regimes 

In this section, the description of the variance of void fraction fluctuations is given at different 
flow regimes. Bubbly-to-slug and slug-to-annular transitions will be analyzed, which are called type 
I and type II transitions, respectively. The variance of void fraction fluctuations in unimodal flows 
is described by [8]. Equation [11] describes cr 2 in bimodal flows. The void fraction ~ of the bimodal 
flow satisfies the void balance equation: 

( = (LO ' I  q -  ( l  - -  O 'L) (  2 [19] 

Based on [19], cL can be expressed as a function of c~, c2 and c: 

( --(2 ( ,  - [ 2 0 ]  

( t  - -  (~ 

By substituting [13], [14], [15] and [20] into [11], an expression is obtained for the variance in 
bimodal flows. This expression can be combined with the unimodal results to yield the general form 
of r~: for different flow regimes: 

"Na2~(1 -- c) + a 0 if ~ ~< q 

a 2 :  Na2(e --((Cl+(2)+£lE2)--N2a2(c2--~(cl+c2)+clc2)+rTo if q < ~  < ~ .  [21] 

Na2~(l  - ¢) + a o if ql ~< 

It is assumed that the background noise components of  the two modes are equal: ~ ~:t~ = O'~;bg = O'0. 
It is not the subject of  the present study to investigate the dependence of flow regime maps on 
various two-phase flow parameters. For details of flow regime maps, see e.g. Taitel et al. (1980), 
Vince & Lahey (1982), McQuillan & Whalley (1985). Whenever it will be necessary in the 
model calculations, the following typical values of  void fractions will be used: c~ between 0.15 
and 0.3, % between 0.6 and 0.8, ¢~ from 0.1 to 0.4 and c2 from 0.5 and 0.8; see Dukler & Taitel 
(1986). 

Results by Govier & Aziz (1972) and Jones & Zuber (1975) indicate that the bimodal system 
responds to void fraction changes first of  all via the variation of the relative residence time of the 
two modes, while the variation of the properties of the modes is a second order effect. Therefore, 
first we consider El and ~2 to be constant in a wide range of void fraction in bimodal flows. Later 
on, the effect caused by the variations of ~ and q will be studied as well. 

According to [21], flow regime transitions appear in the form of jumps from one parabola to 
another. The two parabolas can be characterized as follows: 

(1) The first parabola characterizes the behavior of a 2 in bubbly (~ ~ l )  and in annular 
(c ~< %) flow regimes and it is symmetrical with respect to the c = 0.5 value. The coefficient 
of  the quadratic term of this parabola is - b 0 .  

(2) The second parabola intersects the first one at points c = ~ and c = c,. The variances at 
these points are cr~ = b2c~ (1 - cL ) and a~ = bocr~(l - q) ,  respectively. The second parabola 
describes bimodal slug flow: q ~< ~ ~< %. The coefficient of  the quadratic term of this 
parabola is - b ~ .  

We are talking about " jumps"  from one parabola to another, because, generally speaking, ~] # ~ 
and Clj # ~2. The presence of jumps means that the relative existence time of the second mode CH 
does not vary from zero to unity with increasing void fractions in slug flows, but it has a non-zero 
minimum and a maximum which is less than 1. This effect can be observed in two-phase flow 
experiments when, for example, liquid bridging disappears if the length of the liquid slug decreases 
to a critical value; see Dukler & Taitel (1986). The location of the second parabola is not always 
symmetrical with respect to the c = 0.5 void fraction value. It is shifted toward higher void fractions 
if ~_~ > 1 -c~  and toward lower void fractions when c~ < 1 - - ~ .  

The behavior of  the variance of void fraction fluctuations in various two-phase flows and during 
flow regime transition will be analyzed in the next chapter based on calculations using the binomial 
model of  bubble statistics. 
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3. D I S C U S S I O N  

Two methods will be used in this chapter. The first method is based on spectral analysis of 
artificially generated uni- and bimodal void fraction fluctuation signals which obey Bernoulli 
statistics. In the second method, parameter  studies will be conducted by making use of the 
analytical expressions in [21] in order to describe the dependence of variance of void fraction 
fluctuations on various properties of two-phase flows. 

3.1. Numerical simulation of periodic bimodal noise 

Before introducing results of  numerical simulations, an example of  the biparabolic variance 
versus void fraction relation is shown in figure 1. The parameters of  the model are: q =0.15,  
q = 0.65, El = 0.2, ~11 = 0.6, b20 = 1.25, b 2 = 6.25. For the sake of simplicity, zero background noise 
level has been used; a0 = 0. In the region of void fractions with slug flow (q < c < qt), periodic 
alteration of modes has been assumed with an oscillation frequency of 1.28 Hz. In figure 1, the solid 
line indicates the variance value evaluated according to [21]. One can see the " jumps" from one 
parabola to another at void fractions 0.2 and 0.6, which represent bubbly-to-slug and slug-to- 
annular flow regime transitions, respectively. The corresponding O'Lmax and O'Lmin values are 0.9 
and 0.1. Dashed lines indicate two parabolas. The first parabola,  which is less steep, belongs to 
unimodal flow. The second parabola is more steep and it represents bimodal flow regime. The 
bimodal parabola is steeper than the unimodai one because b~ is always larger than b~. The ratio 

2 2 b,/bo = N = 5 in this model. We chose this rather small value of the maximum number of  bubbles 
in the observation volume in order to emphasize the presence of two parabolas. A small value of 
N corresponds, for example, to narrow-beam experiments with boiling in a tube of small diameter 
(d ~ 1 cm) under atmospheric pressure conditions. In the case of  larger observation volume and/or 
higher pressure, N is much larger and the unimodal parabola is rather flat compared to the parabola 
which describes bimodal flows. 

Spectral effects caused by periodic oscillations in bimodal two-phase flows have been studied by 
means of numerical simulation. Signals have been generated with a sampling time of 31.25 ms and 
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Figure 1. Variance of void fraction fluctuations as a function of the void fraction according to the 
binomial model; parameters of the model are: ~t = 1.15, ~,=0.65. q =0.2. q~=0.6. - - ,  Variances 

belonging to unimodal flow (fiat parabola) and l~imodal flow (steeper parabola). 
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Figure 2. Magnitude of  autospectrum of the simulated void fraction signal, E = 0.37. The oscillation peak 
is seen at 1.28 Hz. 

with a block length of 512. The spectrum of the resulting bimodal signal have been evaluated by 
standard data analysis techniques; see Jenkins & Watts (1968). The fluctuation of the length of the 
liquid slug is also taken into account. Recently, several authors have analyzed the fractal nature 
of  slug length; see Saether et  al. (1990) and Nydal et  al. (1992). In the present work, we use a very 
simple Gaussian model of slug length. The parameters of the model are L and aL, where L is the 
average slug length and aL = ~L is the standard deviation of L. In the calculations, a constant E 
has been used: c = 0.2 (Saether et al. 1990). 

The pdf  does not depend on the way the modes are distributed in time. Therefore, the variance 
of the pdf  remains unaffected by possible periodicities in the fluctuations. At the same time, the 
spectrum has a peak at frequency f0 = I/(T~ + 1",_) and at its harmonics in the case of periodic 
alteration of modes. Here, T~ and T2 are the average residence times of the two modes. The spectral 
effect is illustrated in figure 2, where the autospectrum (APSD) of the simulated void fraction signal 
is shown for c = 0.37. This c value corresponds to a variance value which is close to the maximum 
of the bimodal (steeper) parabola in figure 1. At frequencies much higher than f0 the influence of 
periodic oscillations diminishes and the variances of the two modes determine the spectrum. 

In the present analysis, the normalized band-passed variance of void fraction fluctuations a 2 is 
used instead of  NRMS 2. aN is defined in a similar way as NRMS 2 in [2], the only difference is in 
the normalization factors, a 2 is normalized by the square of signal level variation corresponding 
to 100% void. In the bimodal Bernoulli model, this quantity is denoted by b~, see [16]. NRMS 2 
is normalized by 12, the square of the total dc signal; see [2]. The proposed normalization for a~ 
might look complicated at first, but there is no serious difficulty in its practical implementation, 
as the effect of total voidage at the detector location is a directly measurable and/or computable 
quantity. The advantage of using a~ is that it contains quantitative information about the structure 
of the two-phase flow. This information will be analyzed in the next section. 

The normalized band-passed variance of the spectrum has been determined over various 
frequency regions according to [2]. The results are depicted in figure 3 where the normalized 
band-passed variance is given as a function of the fractional existence time (~H) of the mode having 
the higher void fraction. The upper limit of the applied frequency band was always 16 Hz, while 
the lower limit was 0, 1, 2, 3 and 5 Hz for curves 1-5, respectively. The parameters of the model 
are the same as in figure 2, except for the background noise level (a0 = 0.1) and the maximum 
number of bubbles in the observation volume (N = 100). The first curve, which belongs to 
(0, 16 Hz), has the highest peak. The peaking of the curves is ceasing when the frequency region 
of the evaluation shifts towards higher frequencies. At frequencies much higher than 
fo = l I T  = 1.28 Hz, a~ is, in fact, independent of the oscillation between the modes, and it is the 
weighed sum of the variances of the two modes. 

This result indicates that the high-frequency component of void fraction fluctuations changes 
monotonously with increasing void fractions even in the case of periodic oscillation of the modes, 
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Figure 3. Calculated normalized band-passed variance as a function ore H and frequency band. The upper 
frequency is always 16 Hz: the lower frequencies are: 0, I, 2, 3 and 5 Hz, respectively. 

al though,  the full-range variance has a p rominen t  max imum over the same range of void fraction 
variations.  This observat ion is supported by the data  in figure 4, where the effect of  s imultaneously 
changing frequency band  and CH is shown in a three-dimensional  plot. Note that CH does not  vary 
beyond the limited range of 0.1~).9 in actual b imodal  flows. Within  these limits, cry,. is indeed a 
m o n o t o n o u s  funct ion of OH. 

3.2. Determining the parameters of bubble populations 

The typical size of bubbles  has a p rofound  impact on the intensity of void fraction fluctuations. 
Intuit ively it is clear that the fluctuations are smaller if the void is dispersed in a lot of small bubbles,  
compared to the case when the same a m o u n t  of void is concentrated in a few large bubbles.  
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Figure 4. Three-dimensional plot of the dependence of band-passed variance on the frequency band and 
E H. Frequency varies from 0 to 16 Hz; E H varies between 0 and 1. 
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Figure 5. Maximum of normalized variance as the function of number of bubbles (N) and void fractions 
of the modes, E~ and E2, calculations with Na = const. 

Quanti tat ive characterization o f  this effect is given below based on the binomial model o f  uni- and 
bimodal  flows. 

First, consider the case o f  a fixed observation volume with b, -- N a  = const. I f  the average size 
o f  bubbles decreases, the constant  observation volume can accommodate ,  on average, more  
bubbles. Therefore,  N increases and a decreases. This situation can occur, for example, in an 
experiment with changing system pressure. The effect o f  changing N is illustrated in figure 5, based 
on the numerical evaluation o f  [21]. For  the sake o f  clarity, only the maximum of  the normalized 
variance is shown in figure 5. The position of  the maximum is c = 0.5 in the case o f  unimodal  flow, 
and it is determined by [12] in bimodal  flows. 

These maxima give a good indication about  the changes in a~ generated by boiling. All the curves 
have a maximum value o f  0.25 at N = 1 and decrease with increasing N. The decreasing tendency 
is the fastest for unimodal  flows. In the case o f N  = 100 in unimodal  flow, a~v is close to 10 3. Based 
on the known value o f  N and on the actual level o f  background  noise, the detectability o f  the onset 
o f  boiling in a given experimental ar rangement  can be evaluated. The situation becomes more  
complicated in the case o f  bimodal  flows due to the larger number  o f  free parameters.  Nevertheless, 
it can be concluded that  cr~ reaches saturation between N = 10 and 100. The value o f  ~r u at N values 
above 100 depends mainly on the difference o f  the void fractions o f  the modes. In all cases, the 
number  o f  bubbles can be determined by fitting the experimentally determined a~v versus CH curve. 

In figure 6, results o f  parameter  studies are given in the case o f  constant  average bubbles size, 
a = constant .  This can be interpreted as the case of  constant  properties o f  two-phase flows, while 
the sensitivity volume of  the detector changes. Such an effect can be observed when compar ing  
measurement  results obtained by different types o f  detectors or by changing the focusing of  the 
beam in transmission methods,  etc. All the curves increase monotonous ly  with increasing N. Above  
about  N = 100, a2 u is determined mainly by the difference between the properties o f  the modes. 

In the f ramework of  the present study, we had the limited scope of  performing parameter  studies 
in order to illustrate the relationships between two-phase flow parameters and the statistical 
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characteristics of void fraction fluctuations. Our results offer the possibility to obtain additional 
information about the structure of  two-phase flows when applying the introduced binomial bubble 
fluctuation theory to the interpretation of actual experiments. 

4. C O N C L U S I O N S  

(1) Void fraction fluctuations in two-phase flows have been modeled by making use of binomial 
statistics of bubble dynamics. In the framework of this model, a general expression has been 
derived for the variance of void fraction fluctuations in various two-phase flow regimes, 
including bubbly-to-slug and slug-to-annular flow transitions. It has been shown that the 
dependence of the variance on the void fraction can be described by means of two parabolic 
relationships. The first parabola is rather flat and it describes fluctuations in unimodal flows. 
The second one belongs to bimodal flows and it is usually much steeper than the first one. 
Flow regime transitions in two-phase flows have been modeled as "jumps" from one 
parabola to the other. 

(2) The frequency-content of void fraction fluctuations has been studied by means of band- 
passed noise intensity. Periodic bimodal void fraction fluctuations in slug flows have been 
analyzed with the help of numerical simulations. Based on this analysis, we have explained 
why the high-frequency component of void fraction fluctuations changes monotonously with 
increasing void fractions, while the total variance has a prominent maximum over the same 
range of void fraction variations. It is shown that the high-frequency component of the 
variance is, in fact, independent of the oscillations between the modes and it is the weighted 
sum of the variances of the two modes. 

(3) Perhaps the most important consequence of the biparabolic model is that it allows us to 
estimate the average size and number of bubbles seen by the detector via monitoring the 
magnitude of normalized variance of void fraction fluctuations. We developed a method to 
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determine the number of bubbles in the sensitivity volume of the detector based on 
biparabolic fit of the measured void fraction versus variance of void fractions relationship. 
By applying the present theoretical results to the interpretation of measurements, a better 
insight can be gained about the complex processes in two-phase flows. 
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